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TRANSVERSE KELVIN-HELMHOLTZ INSTABILITY WITH PARALLEL
ELECTRON DYNAMICS AND COULOMB COLLISIONS

I. INTRODUCTION

Velocity shear layers with steep gradient scale lengths are

frequently observed in the high latitude auroral zone (Kelley and

Carlson, 1982; Basu et al., 1985; Kelley and Earle, 1986). Recent HILAT

satellite measurements reported by Basu et al. (1985) show flows with

moderate to strong velocity shears with a shallow irregularity spectrum;

often field aligned currents are also observed in the regions of sheared

velocity flows. The observations suggest that the east-west E x B drift

velocity, for example, is inhomogeneous and usually reverses its

direction as one moves in the north-south direction. This kind of

velocity shear transverse to the magnetic field is usually a source of

Kelvin-Helmholtz instability (Chandrasekhar, 1961; Mikhailovskii,

1972). In the conventional Kelvtn-Helmholtz Instability the mixing of

fluids with different velocities is confined to two dimensions

transverse to the magnetic field; the ion polarization drift leads to

the instability while the electrons simply E x B drift in the

perpendicular plane. In the auroral ionosphere one cannot simply ignore

the dynamics parallel to the magnetic field because there could be

additional sources of free energy or damping that may affect the

transverse mixing of the fluids with sheared velocity. Our aim is to

introduce the third dimension into the two dimensional analysis of

Kelvln-Helmholtz instability and, as a first step, we study tne effects

of parallel electron dynamics. Furthermore, since the electron parallel

motion couples the collisionless and collisional regimes of the

ionosphere, we also Include Coulomb collisions between the electrons an!

ions. A preliminary analysis, in the collisionless domain, was performe

by Thompson (1983) who showed that the parallel electron motion Oul

have stabilizing influence on the Kelvin-Helmholtz instability. In this

paper we perform (i) a more complete analysis and present aenral

manuscript approved Januarv 21. 19g7



stability criterion for a specific velocity profile, (ii) present the

effects of collisions on the instability. In analogy with the role of

gravity on Kelvin-Helmholtz instability in neutral fluids, we observe

that the parallel electron dynamics simulate buoyancy of a fluid in a

gravitational field.

II. THEORY

We consider a homogeneous plasma that is drifting across a magnetic

field (B - B z) because of an equilibrium inhomogeneous electric field

(E - Eo(x) x). We choose Eo(x) - EO tanh(x/L) where L is the scale

length of the shear layer. In this paper we restrict the analysis to

the domain L >> I and IWI << Q, where p, and ai are the ion

gyroradius and gyrofrequency, respectively. Incompressible plasma

motion in two dimensions across an uniform magnetic field is determined

by the constraint that the perpendicular current be divergence free,

V * I= 0 (1)

where i - ne( ve - i), e is the charge, n is the plasma density, ,e,

and v i are the perpendicular drifts of electrons and ions. The veloci-

ties v e and v i are obtained from the momentum equations by assuming

the electrons only E x B drift, while the ions experience both the

E x B drift and the polarization drift. Linearizing (1) with a

perturbed electrostatic potential of the form ; - V(x) exp [-ilwt -

kyy)] with frequency w and wavenumber ky yields the equation governing

the Kelvin-Helmholtz instabilty:
iVt

a~ 2- y k V 0
ax 2- _ ky V 0

where V0 (x) - (c/B)Eo(x). This is a well studied equation

(Chandrasekhar, 1961; Mikhailovskii, 1964; Guzdar et al., 1982;

Satyanarayana et al., 1983); instability (Y > 0, where Y is given

by w - w,- + iY) occurs in the wavenumber domain 0 < k yL < I for V,(x) =

V0 tanh(x/L).

To extend the above theory to three dimensions, we need to consier

the equation

7 "i -)j

V2



which allows for a parallel current along the field lines. In this

paper we consider perturbations along the magnetic field and also

equilibrium currents along the field lines. We include electron

collisions and use a BGK model to calculate the electron susceptibility

(Clemmow and Dougherty, 1969). Kinetic treatment of the electron

parallel motion yields a general equation for the perturbed electro-

static potential * - *(x) exp[-i(wt - k z - k yy)] in the domain

Iwi and V0/L << a

2; ____ kyo _ 2 1 +eZ( o
a y + k[0 k 2 + V/ - 0 (La)

Sx2  V2 e kzv e) ()

2where , e ' Q2 (a,) is the electron (ion) gyro-frequency, ve is the
electron thermal velocity, &e a (w - k yV0 - kzVd + iv e )/k V ,e

'  Vd is

the equilibrium electron drift along the magnetic field, and v is the

electron collision frequency. For v - 0, (4) is the same as equation

(8) of Thompson (1983) without the ion terms; we can ignore the parallel

ion terms if we restrict our analysis to pi/L < 1 where pi is the ion

gyroradius. We have introduced the parallel electron drift, Vd, and

collisional effects which are absent in Thompson (1983).

III. COLLISIONLESS REGIME

(a) Analytical Results

3 In this section we set v= 0. A simple stability boundary

defining the regions of k and k where the system is stable or unstabl-
z Y

can be easily obtained in the domain where the electrons behave as a

fluid; this is the region where the argument of the Z function is large

(i.e., IE. >> 1). In this domain the Z function can be approximated as

1/ e - 1/2 &e . With this approximation (4) takes the form

2 " 2 2

.3$ 2 yO + 1 z th a 0.(5
*

2  -y ( - kyV 0) -(. yV0 J

Equation (5) is identical to the Rayleign equation governing tne

interchange of a drifting, weakly inhomogeneous fluid in a gravitational

field with a sheared Irift velocity (Drazin, 1953; ChandraseKhar,
1961). Here we identify tne tern ,2<9/k2 with the buoyancy .-rm a

.0 h z y
is driving the Rayleigh-Taylor instability g/Ln, where g s gravity an,

Ln is the density gradient scale Irngth. rn the spirit of tne ner'I

fluid wrooem, ae efLne r Ies[' nt,

.. ...-.... 1 *.17r



k 2 L 2 W2

j z Lw (6)
2 k2 V2

y 0

Once we have made this identification, it follows that for Vo(x) - V0

tanh(x/L) the stability boundary is simply (Drazin, 1958)

J - k2L2(1 - k2L2 ). (7)
y y

The modes are stable for J > 1/4 or

k2 V0  2
Z >8)

y

Thus, parallel electron dynamics has a stabilizing influence on the

Kelvin-Helmholtz instability.

Figure I shows the stability boundary where we plot J versus kyL.

We note that the conclusions of Thompson (1983) are qualitatively

correct. However, our analysis shows that J < 1/4 for instability as
opposed to J < 1 given by Thompson (1983) who did not consider the

explIcit shear profile V(x) - V0 tanh(x/L). A derivation of this

stability criterion based upon the energy principle is given in Sec.

III.c.

(b) Numerical Results

We now solve (4) numerically to further show the effects of

the parallel dynamics. In Figure 2 we plot the normalized growth

rate Y/(voL) vs. (= W 2L2/v2) for kyL - 0.5 (which gives maximum0 Z Il e -

growth for kz - 0), k /ky 1.0 x 10- , Vo/v e = 0.01, and Vj = 0. Curve

A shows the growth rate for the collisionless case, while Curve B shows

the growth rate when electron collisions are included (to be discussed

in Sec. IV). For a - 0 we find Y/(V0/L )  0.19 which is the usual

result. As a is increased, we see the Kelvin-Helmholtz growth rate
4!

drops. Since for large a the Kelvin-Helmholtz term (i.e. cc 7) does not

contribute to 4), the mode equation essentially becomes

2 2 r

ye ee

4



which allows only stable roots in the fluid limit with wr -kyV

(1/2)(k z/k y)w W From Curve A of Figure 2 we also see that the modes

are stable for a > 9. This Is in agreement with the criterion J > 1/4

previously discussed. We find that for reasonable values of the

parallel drift velocity (i.e., Vd < ve) these results are not

significantly altered. We find that in this regime the argument of the

Z function is large, indicating that the electrons are merely acting as

a fluid and wave particle effects are not playing an important role. On

the other hand, for sufficiently small a the theory breaks down as

shown by the kink in Fig. 2; the orbits begin to play an important role

here (L - p) and kinetic effects need to Included.

We now solve (4) for several mode numbers. Figure 3 shows the

normalized growth rate Y/(V0L ) as a function of kyL for Vo/v e = 0.01,

a - 1, and k L - 0, 1.0 x 10- 3 , 2.0 x 10-3 , 3.0 x 10-3 , and 4.0 x 10- 3
z

as curves A, B, C, D and E, respectively. Curve A shows the

conventional Kelvin-Helmholtz mode; Y > 0 In the wavenumber domain 0 <

k L < 1 and Y = 0.19 for k L - 0.46. Several points are to be noted
Y max y
from this figure: (i) as k L is increased the wavenumber of the

z
maximally growing mode increases; for example, for kzL = 4.0 x 10-3 the

growth rate maximizes at k yL - 0.8, (ii) the growth steadily decreases

as kzL increases, dropping by 50% for k L = 3 x I0-3 , and (iii) there isz z
a narrower range of k y L for unstable modes; for kzL = 4.0 x 10 - 3 the

waves are unstable only in the region 0.60 < kyL < 0.93.

Equation (4) is solved both for the eigenvalues and the

eigenfunctions (i.e., the perturbed electrostatic potentials). The

elgenfunctions reveal some features of the stabilizing influence of the

electron parallel motion. Briefly, the method used to solve (4) is the

following: The asymptotic form of the solution is assumed to be WK3

type

1 XP [ V dx]

where Q is the coefficient of ¢ in (4). For a given vale of ky, we

search for an elgenvalue w such that integration of (4) with . as the

boundary condition yields a Localized solution whose arih

,~



derivative 3/3x(in 0) is continuous across, for example, the origin. We

note that the electron terms are competing with - 2 in (4) at x =
y

if the electron terms are dominating Q at x = * then Q could become

positive, leading to oscillatory type solution at x = -. On the other

hand, if the electron terms are not large such that Q at x = is

-
2

negative, that is - k the WKB solutions are exponentially decaying.

Figure 4 shows the solutions of (4) for k zL = 3.0 x 10- 3 and k yrL

0.7 for which Y/(V 0 /L) = 0.09 and w /(V0 /L) = 0. We see that both the

real (A) and imaginary (B) parts are exponentially decaying at x

+ - and are fairly localized near the origin where the velocity

reversal is taking place. The localization width is proportional to the

thickness of the shear layer, Ax - 4L. The value of Q at x = is

negative but greater than - k 2 2  In Figure 4b we show the full
y A A

perturbed electrostatic potential, P - (x) exp [ikyy] using the wave

function, O(x), for the maximally growing mode of Figure 4a. The dashed

(solid) lines indicate the relative negative (positive) values of ;. We

note that these values correspond to positive and negative vorticities

of the fluid; the phase of D is such that it allows mixing of the fluid

with different vorticities thereby causing the perturbation to grow.

In Figure 5 we show the eigenfunctions for the lower cutoff

wavenumber kyL - 0.51 corresponding to curve D of Fig. 3 for which k L

3.0 x 10-; the growth rate and the real frequency for this case are

Y/(V0/L ) = 0 and wr/(V 0 /L) = - 0.057, respectively. In this case we

find that Q at x = -- is positive showing oscillatory type solutions,

while Q is negative at x = - giving rise to an exponentially decaying

solution. In comparison with Figure 4a, this figure shows that

electrons are convecting energy away from the localized region in the

shear layer, thus, leading to stablization of the instability; this

point is discussed in detail in the next section. In Figure 5b we show

the corresponding 1. Comparison of Figs. 4b and 5b shows that the

parallel motion of electrons changes the phase of P and the finite real

frequency introduces a relative velocity to the wave preventing any

mixing of the fluid in the x < 0 and x > 0 regions, thus causing the

perturbation not to grow.

* - .',.. .. * ~ b
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c. Energy Principle

In this section we present energy principle arguments to show

the effects of electron parallel dynamics. The Kelvin-Helmholtz

instability arises basically due to the conversion of available kinetic

energy of relative motion of the equilibrium flow into wave energy. In

this case the electrons are confined to the plane perpendicular to the

magnetic field and only E x B drift. If we allow the electrons to move

along the magnetic field, the available kinetic energy in the

equilibrium flow has to overcome the parallel electron compressional

energy for instability to occur.

We can quantify these arguments and obtain a stability condition as

follows. We consider the interchange of two neighboring volume elements

at x and x + 6x which are moving with velocities V0  and V0

+ 6V, respectively. The available kinetic energy is

ST L nm[V 2 + &sV) 2 _ 1 (2v0 + 6v)2] L nm (aV) 2  10)

where mi is the mass of the ions and n is the density. The compres-

sional energy associated with fluid moving a distance 6z (i.e., parallel

to B) is given by

6Z. z 1
6W = < f nmv dz > = nm,(dv dz> (11)6Wz< ne z 2 <e

where me is the electron mass and

dz - - (e/m )30/3z (12)

and < > denotes time averaged quantities. Since the perturbed

electron motion in the perpendicular plane is predominantly E B

motion, we have

Sv - (c/B)30/3yx

7
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From (12) and (13) we have

6v k
X. _y (14)

z
and

a_ = kY 
(15)

6v k Q
z z e

Substituting (14) in (11) we obtain

6W 1 ) < nm (--ze) <x 6v >
n i ~ <7 z k

y y

from which the compressional energy is given as

I (ze)2 (6x) 2

y

From (10) and (16) the stability condition, 6T < 6W, is

1 '- 1 e2 2

y

or

(DV0) 22() < 2 ei z y (18)

since 6V = (aV0 /3x) 6x. Thus, the stability condition can be written as

k 2 V
z 1 rO" )27 > .....
k 2 L h

.5,. y

which agrees with (8) derived in Section II.

IV. COLLISIONAL REGIME

In this section we study the effects of electron collisions on the
transverse Kelvln-Helmhoitz instability. [n Fig. 6 we plot the

normalized growth rate ry/(Vo/L)) as a function of kL for =

K.01, <,L = .0 x 10-3, and k = 0.6. The variation f e

normaiized growth rate for , = 0 is shown by curve 4, and fPr

V 10 0 (7 I.') by c urve . We not-? that the electron co s',ns

3introduce a w scale s..ze, tw collisional mean free oath

&S



mfp ( v/v. Since Xmfp <<  electron motion parallel to B is

Inhibited, and as a consequence the kzL domain over which the modes are

now unstable is much larger. This is shown clearly in Fig. 6, where the

collisional growth rate (curve B) goes to zero for kzL > 0.07, while the

collisionless growth rate (curve A) drops to zero sharply for k zL >

0.005.

In addition, curve B of Fig. 2 shows the collosional growth rate

versus the coupling parameter a. For the range of a considered,

electron collisions make the growth rate almost independent of a. The

electron collisions thus have a destabilizing influence on Kelvin-

Helmholtz instability. This would in turn alter the stability boundary

In such a way that the basic Kelvin-Helmholtz mode is unstable in a

larger kz domain than the collisionless case.

V. SUMMARY AND DISCUSSION

In this paper we have considered the effect of parallel electron

motion on the transverse Kelvin-Helmholtz instability as a f.ist step

toward a three-dimensional analysis of the nature of convective flows in

the high latitude ionosphere. In the collisionless regime (N. = 0), we

show that for an inhomogeneous velocity profile given by V(x) = V tanh

(x/L) the Kelvin-Helmholtz instability is stable for kz/ky

> (V /Lw kyL(1 - k2 L2 )1/ 2 in the limit w - k V >> k v. We further
0 thy y y 0 ze

show that the physical mechanism for stabilization is the compressional

energy given to the electrons parallel to B. In the collisional egine

( v. * 0), we show that the Kelvin-Helmholtz instability is not as

. easily stabilized by finite kz effects; this is attributed to the

inhibition of parallel electron motion for k < < x
mfp

We apply this stability criterion for parameters relevant to the

high latitude ionosphere. We take w h = 3.2 x 10 sec-, k L = *].5 , and

assume kz/ky . (a /j / where [ and a are the perpendicular and
zy ' I J_ I

parallel conductivities, respectively (Farley, 1959). The vaI-e

of a Ij varies with altitude in the ionosphere and is generaLy j I en
JLI -o-

to be in the range 10 -  (lower F regi-;n) - 10- (topside g rein.

Thus, for instability to occur it is required that V0 /L > 2.3 sec 1 in

the topside region. Velocity shears have teen reported in the range

Vo/L = 0.5 - 20 Hz (Kelley and %arlson, I177; Earie and Kelley, ' so

that the nst'a otLit'y -ul, LocaL'y :e active n tn: t;D59 .

h the lower F r e~ion, ,;ere ,v - I 2- set an kj,"

q

I



10 2 velocity shears of order 1 - 10 sec -  are needed to drive the

Kelvin-Helmholtz modes unstable (e.g., for k yL = 0.6 and kzL = 0.01).

However, these conclusions are predicated on the important assumption

that kz/ky M (a i/a I)/ which may not be the case. Recent analyses of

unstable flute modes in barium clouds (i.e., the gradient drift

instability) (Sperling et al., 1984; Drake et al., 1985) indicate that

k /ky = 0 within the unstable cloud. A more detailed three-dimensional

analysis (Drake and Huba, 1987) is needed to assess the role of the

Kelvin-Helmholtz instability in high latitude dynamics. Finally, we add

that we have neglected ion-neutral collisions in the analysis; these can

be important in the lower F region. In a forthcoming study (Mitchell et

al., 1987) we will present analytical and computational results

demonstrating the effect of Ion-neutral collisions on the transverse

Kelvin-Helmholtz instability. In the linear regime, it is found that

ion-neutral collisions have a stabilizing influence on the instability.
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